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Abstract
To explore the two different long-time limit behaviours (decaying and non-
decaying to zero for t → ∞) of a dynamical quantity, we present a theoretical
approach which analyses a continued fraction (CF) representation of the
quantity. On the basis of our analysis, we show that the two asymptotic
behaviours are characterized by a structure of CF coefficients, and that there
exists a certain condition that determines the transition between the two limits.
In addition a measure is introduced to predict the transition. We apply our
theory to various systems to confirm its validity. The nondecay behaviour
involves a kind of feedback process in a dynamical system. The appearance of
a dynamical similarity near the transition is discussed.

PACS numbers: 05.70.Fh, 02.10.Ab, 89.75.Kd

1. Introduction

Understanding the asymptotic long-time t (or small-frequency ω) behaviour for a dynamical
quantity of interest, say a function F(t), is one of the important problems in dynamics. The
asymptotic behaviour, which apparently depends on excitation properties involved in physical
systems, appears to show the following two distinctive situations: (i) the function F(t) decays
to zero as t → ∞ whether slowly or fast; (ii) it does not decay to zero but approaches
nonzero (a finite value). Symbolically, (i) and (ii) imply limt→∞ F(t) ≡ F(t = ∞) = 0
and F(t = ∞) �= 0, respectively. The spectral distribution of the function contains a delta
function singularity at the origin, δ(ω), because of F(t = ∞) �= 0 for (ii), while it does not
for (i).

The time evolution between (i) and (ii) is essentially different. The presence of the
singularity δ(ω) (localized excitation) gives rise to a drastic change in the kinetic properties.
To be specific, let us consider for example the time evolution of a wavepacket moving in a large
system. Then the propagation can be characterized by the following dynamical quantities:
the probability of finding a particle at time t, the inverse variance of the wavepacket, etc. The
probability, for example, tells us that if there is a localized state induced in a system due to
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scatterers (e.g. impurities), then a quantum particle’s motion belonging to the localized state
will be limited to some finite region so that the probability of finding this particle does not
vanish, giving a nonzero chance to be found for t → ∞. However, if a quantum particle
propagates on a perfect lattice in which only extended states are present, it simply delocalizes
throughout the whole lattice, resulting in zero chance. In general, these quantities mentioned
above are expected to decay like a power-law form t−α for a sufficiently long-time limit. Then
the propagation exhibits delocalization if α > 0 (i.e. F(t = ∞) = 0) and localization if α = 0
(i.e. F(t = ∞) �= 0) [1].

Suppose, as another example under consideration, that a many-particle system is properly
perturbed, where F(t) is a correlation function of a dynamical variable, e.g. a tagged particle
position. Then a plausible interpretation in the situation (ii) is that although time evolves the
correlation function does not decay any further but remains at a nonvanishing value beyond a
certain time window, which reflects a sort of feedback process: an amount of the perturbation
energy delivered to the system is returned or remains so that we cannot remove the energy
permanently from the tagged particle, resulting in the nondecay of the correlation function.

Perhaps on analysis of a variety of dynamical phenomena a transition between the above
two situations is likely to occur. In this context, it may be interesting and important to examine
the underlying asymptotic behaviour of the dynamical quantity on a theoretical basis.

Our fundamental concern in this paper is as follows. If F(t) undergoes a transition
between the two situations, then how does its structure change between the short-time region
and the long-time one, and is there a certain condition on F(t) that governs the transition?
Furthermore, how can one discriminate whether F(t = ∞) = 0 or �= 0? This discrimination
is, however, usually very difficult without knowledge of F(t) for a sufficiently long-time
regime. Moreover, for many-particle or complex systems, evaluatingF(t) up to such a regime
may not be feasible due to real computational constraints. Therefore, it may be necessary to
pursue the idea that F(t = ∞) can be extracted or predicted from finite time (i.e. t < ∞)
knowledge of F(t).

The dynamical functionF(t) can usually be investigated via a power series or a continued
fraction (CF) representation [2–5]. The power series expansion analysis shows a difficulty
which is briefly mentioned in the following section. Hence, we consider the CF representation
for our study. The main point considered here is to take coefficients of the CF expansion
as basic elements for describing the dynamical function, and to examine the characteristics
of the CF coefficients particularly near the transition. The CF coefficients, which are time-
independent (i.e. static) quantities, completely determine the underlying dynamical behaviour.
This paper is organized as follows. In section 2, we present a way to study the problems
posed above, which is based on the CF representation. We show that the presence of the delta
function singularity, δ(ω), is intimately related to the structure of the CF coefficients and there
exists a convergence condition for the structure. Here each pair of even and odd coefficients
plays the key role of convergence. This feature allows us to make prediction possible. In
section 3, we apply our approach to various physical systems in which the CF coefficients are
calculable, to confirm the validity of our idea. Although the physical systems are different the
characteristics of the CF coefficients are found to show a similarity. This result is understood
by the condition. Finally, concluding remarks are given in section 4.

2. Theoretical approach

To specify the function F(t), we assume that F(t) (appropriately normalized) has a time-
reversal invariance with a real even function, F(t) = F ∗(−t), * denoting complex conjugate,
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and its short-time expansion exists such that F(t) = ∑∞
k=0(−1)kckt2k/(2k)! with the

coefficients (moments) {ck} � 0 where c0 = 1, F(t = 0) = 1.
The question here is that if the moments ck are given up to some order of k, is it then

possible to predict F(t = ∞). Analysis of the moments is difficult because ck become very
large as the order k increases and also it is hard to find a connection between t < ∞ and t = ∞
regimes. Instead, we analyse the function via a continued fraction (CF) representation. If
F(t) is Laplace transformed, F̃ (z) = ∫ ∞

0 e−ztF (t) dt , then this Laplace-transformed function
may be expanded as a CF form [2, 3]

F̃ (z) = 1

z +
d1

z +
d2

z +
d3

z + · · ·

(1)

with the CF coefficients {dk} � 0. Here {dk} are functions of {ck}. They are connected as
follows: c1 = d1, c2 = d1d12, c3 = d1

(
d2

12 + d2d3
)
, c4 = d1

[
d3

12 + d2d3(d12 + d1234)
]
, etc.

where the notation d12···l denoting d1 + d2 + · · · + dl was used. Therefore, if the moments {ck}
are given, the CF coefficients {dk} are calculable. The converse is also true, namely that the
{dk} are also algebraic functions of the {ck}. Note that these coefficients are time-independent
(i.e. static) real nonnegative values.

Now, by noting F(t = ∞) = limt→∞ F(t) = limz→0 zF̃ (z) and using the CF
equation (1), we readily find

F(t = ∞) = 1

1 + d1
d2

+ d1
d2

d3
d4

+ d1
d2

d3
d4

d5
d6

+ · · · ≡ 1

1 +G
. (2)

Here G = ∑∞
n=1 gn where g1 = d1

d2
, g2 = g1

d3
d4
, g3 = g2

d5
d6
, . . . . Then our posed problem is

reduced to inquiring whether the series G is convergent or not. That is, F(t = ∞) �= 0 if
G < ∞ and = 0 ifG → ∞. Note that the units of gn,G, and F(t = ∞) are all dimensionless
(pure number) because of the presence of the ratio of dk having the units of (time)−2. Thus,

0 � G � ∞ 0 � F(t = ∞) � 1. (3)

The case F(t = ∞) = 1 (i.e. G = 0) occurs only when d1 = 0. In the frequency ω domain a
value F(t = ∞) implies a spectral weight at the origin ω = 0. It is obviously nonnegative as
shown in (3).

Let us now consider under which condition the series G converges. Due to the d’Alembert
criterion [6], the convergence of the series G = ∑∞

n=1 gn depends upon the following ratio:

r ≡ gn

gn−1
(4)

that is, the series G is convergent if the ratio r < 1 and divergent if r � 1 for n → ∞. It is to
be noted that gn = ∏n

k=1
d2k−1

d2k
and gn = gn−1

d2k−1

d2k
, and thus the ratio gn/gn−1 then becomes

d2k−1

d2k
. Therefore, the convergence test of the ratio gn/gn−1 for n → ∞ is equivalent to that

of the ratio d2k−1

d2k
for k → ∞. We point out that d2k−1 and d2k correspond to the odd and

even CF coefficients, respectively. Here, and in what follows, we will refer to (4) as the
convergence condition that we have sought. Each pair of the odd and even CF coefficients
shown in equation (2) is successively involved in constructing the asymptotic behaviour of
a dynamical quantity. By this pairing nature the possible patterns of {dk} that can yield
the convergence behaviour are restricted. For example, it is easy to show from the series
G in equation (2) and condition (4) that {dk} with the three repeated elements (a, b, c)
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(i.e. {dk} = {a, b, c, a, b, c, a, b, c, . . .}) cannot generate the corresponding series G being
convergent, regardless of the arrangements of (a, b, c) (namely (a, c, b), (b, a, c), etc). This
G always diverges.

Finally, our task is simply to calculate dk (or ck) up to some order of n = 2k for a given
system and then examine the convergence condition (4). However, as is mentioned before, the
calculation is practically limited to some finite order (presumably not large k). We introduce
a measure called slope, which is useful in predicting the discrimination with the finite order,
defined as

Sn = (log g1 − log gn)

(log 1 − logn)
(5)

with n � 2. This slope has the following property. Consider the onset of transition between
F(t = ∞) = 0 and �=0. Then the difference between the slopes Sn with r � 1 and S′

n with
r < 1, |Sn − S′

n| � ε > 0, may grow as n is increased because of condition (4). Consequently
their separation at the transition point is expected to take place. We will illustrate that in the
next section. The above-introduced measure is not a unique way to determine the transition
but it turns out to be a useful tool at least in our analysis. This usefulness is based on the even
and odd features involved in the CF coefficients. In fact, one can see that if some {dk} with
the even and odd pattern dk are chosen, a separation in the slope Sn becomes evident.

To test our approach, we apply it to various physical systems where dk (and hence ck)
are calculable. These are (A) harmonic oscillators, (B) the Mott–Hubbard transition of the
Hubbard model, (C) one-dimensional (1D) spin XY model and (D) quantum propagation of
an electron in 1D and 3D tight-binding lattice systems with an impurity and in its 1D system
under the action of a dc electric field (Stark ladder). For simplicity, the corresponding F
and G will be denoted as FA,GA, FB , etc, and {dk} will be expressed in dimensionless units
hereafter.

3. Applications

For (A), the dynamics of a classical coupled harmonic oscillator on a Bethe lattice was studied
in [7], where the Hamiltonian is given by H = (1/2m0)

∑
i p

2
i + (k0/2)

∑
〈i,j〉(qi − qj )

2

with the particle mass m0 and the coupling constant k0. Here 〈i, j 〉 stands for the nearest
neighbour interaction characterized by the coordination number l (l � 2, the case l = 2
corresponding to a linear chain lattice), and pi and qi represent the particle momentum
and coordinate, respectively. Exact solutions for both a velocity autocorrelation function
(say, a(t) = (pi(t), pi(0))/(pi(0), pi(0)) with pi(0) = pi(t = 0), being the tagged ith
particle momentum at initial time t = 0) and a memory function (say, m(t)) using a CF
formalism are shown in [7]. These two functions are connected via the generalized Langevin
equation [4] as follow: da(t)/dt +

∫ t
0 d1m(t − s)a(s) ds = 0. Its Laplace transformation

gives ã(z) = 1/(z + d1m̃(z)) ≡ 1
z+

d1
z+

d2
z+ · · ·, a CF form, where ã(z) and m̃(z) are the Laplace

transformed functions of a(t) and m(t), respectively. Therefore, the velocity autocorrelation
function (vaf) is characterized by {dk} with k � 1 and the memory function (mf) by {dk} with
k � 2. It has been shown that the CF coefficients with the units of k0/m0 for ã(z) are given by

{dk} = {l, 1, l − 1, 1, l − 1, 1, l − 1, . . .}. (6)

Let us examine the series GA. For the vaf case, we find from the CF pattern {dk} (6)
that d1

d2
= l and d2k−1

d2k
= l − 1 for k � 2. Hence the ratio r is greater than and equal to 1

(i.e., r � 1) for all k because of l � 2. It follows from condition (4) that the series GA is
divergent and thus FA(t = ∞) = 0. Consequently the vafs of the Bethe lattice (l > 2) and
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the linear chain (l = 2) decay to zero, which is confirmed by the exact results (power-law
decays ∼t−3/2 and ∼t−1/2 → 0 as t → ∞, respectively). The perturbed energy imparted to
the particle momentum disperses throughout the lattice system and none of the energy comes
back or remains so that the correlation functions die out with time.

For the mf case, we find that d2k−1

d2k
= 1/(l − 1) for all k. The ratio in (4) then becomes

r = 1 when l = 2 and r < 1 when l > 2. It follows from condition (4) that GA is divergent
for l = 2 but convergent for l > 2. This convergent case yields a nonvanishing value,
GA = ∑∞

n=1 gn = 1/(l−1)
1−1/(l−1) = 1/(l− 2). From equation (2) we get FA(t = ∞) = 0 for l = 2

and

FA(t = ∞) = 1

1 +GA

= (l − 2)

(l − 1)
�= 0 (7)

for l > 2. Note that FA(t = ∞) < 1. Consequently, the mf for the linear chain case with
l = 2 decays to zero while for the Bethe lattice case with l > 2 it does not decay to zero but
approaches the limiting value (7), which is exactly the same result as obtained in [7]. Note
that we simply recovered all the t = ∞ limit results without performing the nontrivial inverse
Laplace transform, i.e. FA(t) = (1/2π i)

∫
c

ezt F̃ A(z) dz where F̃ A(z) implies ã(z) or m̃(z).
In the context of the generalized Langevin equation the memory function incorporates all the
internal fluctuating processes after the initial perturbation. In the Bethe lattice with l � 3, the
fact that there exists no well defined wave vector gives rise to a long-lived fluctuating mode
localized at zero frequency in the memory function, which is responsible for the nonvanishing
memory, whereas in the linear monatomic chain (l = 2) the processes in motion are regular
and thus no such localized mode is present. Consequently, they keep losing memory as time
progresses, eventually yielding the decay of the memory function to zero.

Let us now look at some numeric values of the slope Sn (equation (5)) for the mf case
with l = 2 and 3, for instance. Then we see that Sn�2 =, 0, 0, 0, . . . (constant zero slope) for
l = 2 and −1, −1.26, −1.5, −1.72, . . . (increasing negative slope) for l = 3, indicating that
the separation between the two slopes is persistently getting larger as n increases. Thus this
indication tells us that the transition takes place between l = 2 and l � 3.

For (B), the Hubbard model the Hamiltonian is given by H = − ∑
〈ij〉σ tc

†
iσ cjσ +

(U/2)
∑

iσ niσ ni,−σ , where 〈ij 〉 means nearest neighbour sites and c†iσ (ciσ ) is the fermion
creation (annihilation) operator with spin σ at site i [8, 9]. In [8], the one-particle Green
function given byFB(t) ≡ (c

†
iσ (t), ciσ (0))/(c

†
iσ (0), ciσ (0))with c(0) = c(t = 0) on an infinite

dimensional Bethe lattice was calculated in the paramagnetic ground state. Its Laplace–Fourier
transform called density of states (DOS), F̃ B(z) with z = iω + ε, at the chemical potential
µ = U/2 was shown to be written as a CF form, and its CF coefficients were found to be
given by

{dk} = {δ1, δ2, a, b, a, b, a, b, . . .} (8)

where δ1 = a + 1
2b, δ2 = (

ab + 1
4b

2
)/
δ1, and a = 1

4U
2 and b = 2lt2, l being a coordination

number. We note that this alternating pattern {dk} resembles that of case (A). Let us investigate
the series GB for the DOS. We find from (8) that d1

d2
= δ1

δ2
and d2k−1

d2k
= a/b for k � 2. Then

the ratio in (4) becomes r � 1 if a/b � 1 and r < 1 if a/b < 1. Thus the series GB is
divergent if a/b � 1 and convergent if a/b < 1. Its converging value is easily calculated as
follows: GB = ∑∞

n=1 gn = (δ1/δ2)
(
1 +

∑∞
n=2(a/b)

n−1
) = (δ1/δ2)b/(b − a). As a result,

from equation (2) we obtain that FB(t = ∞) = 0 for a � b and

FB(t = ∞) = 1

1 +GB

= (b − a)/b

δ1/δ2 + (b − a)/b
�= 0 (9)

for a < b. Note FB(t = ∞) < 1.
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This value (9) is exactly equal to a weight of peak at zero frequency regarded as a measure
of quasiparticle mass renormalization obtained in [8] (see equation (30) therein). This peak
is due to the Coulomb interaction in the Hubbard Hamiltonian where a particle with different
spin state is only allowed to sit on a site. The Mott–Hubbard transition occurs at a critical
value Uc (i.e. at a = b).

To look at some numeric values of the slope Sn here, consider the cases with a/b =
1.2, a/b = 1 and a/b = 1/1.2. Assuming δ1/δ2 = a/b, we find that Sn�2 = {0.26,
0.33, 0.39, 0.45, . . . ,}, {0, 0, 0, . . . ,} and {−0.26,−0.33,−0.39,−0.45, . . .}, respectively,
exhibiting that the slopes split at a = b and their splitting becomes wider persistently. This
separation indicates that the transition occurs at a = b.

For (C), the one-dimensional nearest neighbour coupled spin- 1
2XY model Hamiltonian

is given by H = 2
∑

i J
(
Sxi S

x
i+1 + Syi S

y

i+1

)
, where Sαi with α = x, y are the spin operators

at site i. In [10], a spin relaxation function for the XY model given by FC(t) ≡(
Sαi (t), S

α
i (0)

)/(
Sαi (0), S

α
i (0)

)
was calculated via a CF representation, and its CF coefficients

were found to be given by

{dk} = {1, 2, 3, 4, 5, . . . , k, . . .} (10)

where dk = kδ with δ = 2J 2. In this case, we find that d2k−1

d2k
→ 1 as k → ∞, yielding the

ratio r → 1. Thus GC diverges and FC(t = ∞) = 0. We can also see this divergence in
another way: since GC = 1

2 + 1·3
2·4 + 1·3·5

2·4·6 + · · · can be realized by a binomial (1 − x)−1/2 =
1 + 1

2x + 1·3
2·4x

2 + 1·3·5
2·4·6x

3 + · · · [6], it follows that GC = limx→1((1 − x)−1/2 − 1) → ∞.
The relaxation function thus decays to zero, which is confirmed by the exact result (Gaussian
decay ∼e−J 2t2 → 0 as t → ∞). Excitation of a tagged spin regularly transfers throughout the
entire neighbouring spins, resulting in no excitation energy to return or stay and thus no δ(ω)
singularity in the spin relaxation function.

We see that the slope Sn�2 = −0.415,−0.427,−435,−0.440,−0.444,−0.447, . . . .
The slope variation becomes very small, approaching a limiting value quickly. This behaviour
indicates the divergence of GC .

For (D), we consider the motion of an electron propagating through a lattice system in
the presence of an impurity and/or a dc field. The considered Hamiltonian is given by the
tight-binding form

H =
∑

i

εi |i〉〈i| + V
∑

〈ij〉
|i〉〈j | + eEa

∑

i

i|i〉〈i| (11)

where |i〉 denotes the Wannier state of the electron on site i, 〈ij 〉 nearest neighbour interaction,
V the hopping energy between i and j, εi the on-site energy at i, e the charge, E the dc electric
field, and a the lattice constant. We assume that one impurity is at site i = 0 with the energy ε0

in an otherwise perfect lattice (i.e. εi = ε0δ0i) and an electronic wavepacket initially located
at a site i starts to propagate through the lattice. The time evolution is governed by the time-
dependent Schrödinger equation i ∂

∂t
|ψ(t)〉 = H |ψ(t)〉, where |ψ(t)〉 is the wavefunction at

time t and h̄ = 1. The dynamical quantity we want to study here is the following probability
(observable): if the wavepacket given above is at the site i = 0 at time t = 0, what is the
probability of finding it at the same site after an infinitely long time t → ∞ has gone? By
measuring this probability (which may be said to be the return probability [1]) one can see
the effect on the propagation of the wavepacket caused by impurities or electric field. If a
lattice is perfect, a particle can evolve to infinity. It is delocalized throughout the lattice.
This probability then becomes zero for t → ∞. If, however, the initial site belongs to a
localized state due to the impurity or the field, the propagation is confined to a finite region.
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Figure 1. Log–log plot of the gn versus n for various values of the impurity strength ε

(from the top to the bottom lines). (a) ε = 0.0, 0.2, 0.4, 0.7, 1.0, 1.5, 2.0 for the 1D system.
(b) ε = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 for the 3D system.

This probability then becomes nonzero for t → ∞. This probability at arbitrary time t may
be written as

FD(t) = |〈0|ψ(t)〉|2 (12)

where |0〉 is the initial state of electron on the site i = 0 at time t = 0. Hence our task here is
to see whether FD(t = ∞) = 0 or �= 0.

First, we consider the impurity problem above for the 1D linear chain lattice as well as
the 3D simple cubic lattice when the dc electric field is absent, i.e. E = 0. We find that
the expressions of dk for FD(t), equation (12), which is a function of ε0/V , become quite
complicated as the order of k increases. We cannot deduce its general pattern as in the cases
(A)–(C). Therefore by using a computer we have numerically computed dk for different values
of ε0/V up to k = 20 (i.e. ten gn).

To see the overall behaviour of GD we draw a log–log plot of the gn versus n. For the
1D system the results are shown in figure 1(a). One can see that each line depends on the
impurity strength defined by ε̄ = ε0/V . Near ε̄ = 0 the lines are seen to be rather straight.
As ε̄ increases they bend down persistently and rapidly. This indicates that they separate
from the line for ε̄ = 0. For the 3D system the results are shown in figure 1(b) where we
note that even though ε̄ increases the lines do not tend to bend down before they exceed
a certain ε̄. To look at this feature with a finer scale we calculate the slope Sn defined by
equation (5). The results are presented in table 1. We find that, as in the cases (A) and (B),
they separate at a critical value ε̄c: the slopes decrease (which means they are going towards
positive slopes) if ε̄ � ε̄c while they increase (going more towards negative slopes) if ε̄ > ε̄c.
Near ε̄c the slope variations are relatively small but rather fluctuating in the 3D case. We
estimate ε̄c = 0.1 (see table 1 and compare between ε̄ = 0.1 and 0.2) for the 1D case and
ε̄c = 4.0 (compare ε̄ = 4.0 and 4.1) for the 3D case. The transition appears to take place at
the critical value ε̄c.

The numerical results of the dk for the 1D and the 3D systems are depicted in figures 2
and 3, respectively. We observe that the CF coefficients show each pairing of the odd and
even dk illuminating condition (4): for ε̄ � ε̄c the ratio r approaches 1 rather quickly while
for ε̄ > ε̄c r does not become 1, i.e. r < 1, as the order k is increased. Let us compare
the present case with the previous ones (A) and (B) near the transition. We then find that
the characteristics of their CF coefficients are similar, exhibiting an alternating pairing feature.
This might be termed ‘dynamical similarity’ in the sense that the dynamical quantities, even
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Table 1. The slope Sn shown for different impurity strength ε̄ in the 1D system (the upper section) and the 3D system (the lower section).

Sn(1D) ε = 0 ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.7 ε = 1.0 ε = 1.5 ε = 2.0

S2 −0.180 10 −0.182 73 −0.190 63 −0.203 74 −0.221 99 −0.245 26 −0.306 27 −0.430 63 −0.705 66 −1.029 70
S3 −0.180 77 −0.183 96 −0.193 52 −0.209 43 −0.231 63 −0.260 06 −0.334 99 −0.488 96 −0.830 84 −1.231 13
S4 −0.180 24 −0.183 91 −0.194 92 −0.213 28 −0.238 99 −0.272 00 −0.359 43 −0.539 98 −0.940 45 −1.404 51
S5 −0.179 41 −0.183 51 −0.195 84 −0.216 44 −0.245 36 −0.282 61 −0.381 64 −0.586 74 −1.040 04 −1.554 47
S6 −0.178 52 −0.183 02 −0.196 58 −0.219 27 −0.251 21 −0.292 45 −0.402 43 −0.630 64 −1.131 42 −1.677 90
S7 −0.177 65 −0.182 53 −0.197 24 −0.221 91 −0.256 73 −0.301 77 −0.422 21 −0.672 46 −1.214 38 −1.771 13
S8 −0.176 82 −0.182 06 −0.197 87 −0.224 44 −0.262 01 −0.310 72 −0.441 25 −0.712 60 −1.288 29 −1.832 05
S9 −0.176 04 −0.181 63 −0.198 49 −0.226 89 −0.267 12 −0.319 38 −0.459 72 −0.751 21 −1.352 59 −1.861 47
S10 −0.175 31 −0.181 23 −0.199 11 −0.229 28 −0.272 10 −0.327 81 −0.477 73 −0.788 30 −1.406 77 −1.865 12

Sn(3D) ε = 0 ε = 3.0 ε = 3.5 ε = 3.8 ε = 4.0 ε = 4.1 ε = 4.3 ε = 4.5 ε = 5.0 ε = 6.0

S2 −0.183 88 −0.168 75 −0.219 06 −0.259 89 −0.291 18 −0.307 96 −0.343 64 −0.381 95 −0.487 42 −0.726 92
S3 −0.132 54 −0.133 81 −0.179 67 −0.228 40 −0.253 17 −0.271 22 −0.310 53 −0.353 92 −0.478 28 −0.775 75
S4 −0.122 36 −0.101 82 −0.144 82 −0.187 69 −0.223 97 −0.244 44 −0.289 96 −0.341 34 −0.492 58 −0.862 84
S5 −0.108 68 −0.095 09 −0.141 36 −0.188 92 −0.229 85 −0.253 15 −0.305 36 −0.364 79 −0.541 35 −0.973 99
S6 −0.100 52 −0.090 41 −0.138 07 −0.188 46 −0.232 57 −0.257 90 −0.315 13 −0.380 87 −0.577 94 −1.063 21
S7 −0.093 18 −0.088 31 −0.137 37 −0.189 69 −0.235 93 −0.262 67 −0.323 48 −0.393 92 −0.607 45 −1.113 92
S8 −0.088 45 −0.083 24 −0.130 75 −0.182 96 −0.230 17 −0.257 83 −0.321 61 −0.396 60 −0.628 23 −1.214 27
S9 −0.084 52 −0.079 38 −0.126 57 −0.180 11 −0.229 50 −0.258 77 −0.326 88 −0.407 79 −0.660 03 −1.297 08
S10 −0.081 09 −0.076 32 −0.123 23 −0.177 86 −0.229 13 −0.259 80 −0.331 78 −0.417 98 −0.688 64 −1.369 59
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Figure 2. Trends of CF coefficients dk in arbitrary units versus k for the 1D system are shown
for different values of ε = 0.0, 0.5, 1.0, 2.0 (from the bottom to the top lines). The alternating
trend of each pair of the odd and even dk becomes more pronounced as ε is increased. The case
with ε = 0.0 (the bottom one) shows that the alternating trend dies out quickly as k is increased,
yielding the ratio r → 1.

1 3 5 7 9 11 13 15 17 19

1

0

k

d k

Figure 3. Trends of CF coefficients dk in arbitrary units versus k for the 3D system are shown for
different values of ε = 0.0, 2.0, 3.0, 4.0, 5.0, 6.0 (from the bottom to the top lines). The alternating
trend of each pair of the odd and even dk begins to show up around ε = 4.0, and becomes more
pronounced for ε > 4.0. For the cases with ε � 4.0 such a trend is hardly seen and the ratio r
approaches 1 rapidly as k is increased.

though their physical systems are different, are described by asympotically similar trends of
dk in the long-time limit.

Based on the above results, we can arrive at the conclusion that GD converges (i.e.
FD(t = ∞) �= 0) for ε̄ > ε̄c and diverges (i.e. FD(t = ∞) = 0) for ε̄ � ε̄c. Hence a localized
state due to the impurity exists if ε̄ > ε̄c while no localized state is present if ε̄ � ε̄c. It
turns out that our localization problem is equivalent to the problem of finding a bound state
induced by an impurity which was studied by Koster and Slater [11, 12]. They used a Green
function method to find the corresponding critical values. These are zero for the 1D system and
2/0.4990 (
4.008) for the 3D system. Our results (ε̄c = 0.1 and 4.0) are in good agreement
with their results.

Next, we consider the same problem as above but in the 1D system without the impurity
when the dc field E �= 0. The results for a log–log plot of the gn versus n are shown in



7314 J Kim

1 2 4 8n

0.1

1

g n

1 10
1 2 4

0.5

0.8

6

Figure 4. Log–log plot of the gn versus n for different values of E(ε) = 0.0, 0.1, 0.2, 0.3, 0.4
(from the top to the bottom lines). The dotted lines are for E and the solid lines for ε in the 1D
case. The inset shows magnification near gn for smaller n.

1 3 5 7 9 11 13 15 17 19
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Figure 5. Trends of CF coefficients dk in arbitrary units versus k for the 1D system with electric
field E �= 0 are shown for different values of E = 0.0, 0.1, 0.2, 0.3, 0.4 (from the bottom to the
top lines). The alternating trend of each pair of the odd and even dk is manifest as the order k as
well as E are increased.

figure 4 where the field strength is defined by Ē = eEa/V . It is well known that the field
gives rise to Bloch oscillations and the corresponding critical field strength Ēc = 0 [13, 14].
We observe that the separations (the bending-down of the lines) take place for even smaller
Ē compared to the corresponding ε̄ for the 1D impurity case. We have examined the slope
given by equation (5) to estimate Ēc = 0.01. It is even closer to zero than the impurity’s
ε̄c = 0.1. In figure 5 the numerical results of dk are displayed. Here the same pairing features
as shown in the preceding cases are observed and reflect condition (4). The dk in this case are,
however, growing with the increasing order of k, which contributes to the rapid convergence
of GD . This implies that the field more strongly induces localized states in the system than
the impurity. We have also studied the case where both the field and impurity are present (i.e.
E �= 0 and ε0 �= 0). In this case we find that the additional impurity leads to a more rapid
separation for a given Ē, indicating that a more pronounced localization occurs in the system
[15].
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Finally, let us see what happens if the impurity strength ε̄ or the field strength Ē is strong.
GD then converges so quickly that the first few gn become effectively dominant (see gn for
large ε̄ and Ē in figures 1 and 4). ThusGD < 1 and from equation (2) FD(t = ∞) 
 1 −GD.
In the extreme limit ε̄ (Ē)→ ∞, then GD � 1 and the probability FD(t = ∞) → 1. This
implies that the electron remains around the starting site, i.e. it gets no chance to propagate to
the neighbouring sites. An analogy is the case when it is trapped in a potential well.

4. Concluding remarks

In this paper we have presented a theoretical approach to study the asymptotic long-time
(t → ∞) behaviour of a dynamical quantityF(t). We have found that first, the two asymptotic
limits of F(t = ∞) = 0 and �=0 are directly related to the structure of the CF coefficients that
is characterized by an odd and even pairing feature, and secondly, the transition between the
two limits is determined by the convergence condition of this structure. In addition, this fact
allows us to predict its critical point effectively by introducing the slope Sn as an indicator
of its separation. The pairing nature following the convergence condition (4) underlies the
dynamical similarity.

The important point is that this similarity appears if there are constraints in the systems
by which excitation transfers are influenced, although their detailed properties are different.
As illustrated in section 3, the constraints turn out to be the lattice structure, interaction,
perturbations like impurity and electric field, etc. This suggests that the similarity might not
rely on the specific details of systems as far as the asymptotic limits characterized by the CF
coefficients are concerned, and also it would be typical in a sort of feedback mechanism. We
are planning to present more reports on such a universal feature. We point out that since our
theory itself (more specifically the convergence condition itself) is model-independent it can
be applied to arbitrary dynamical quantities with a time-reversal invariance. The present study
might provide useful information or a basis to explore and understand the transition problems
which will appear in general systems.
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